Arch 436 Advanced Modeling _ Professor: Alphonso Peluso _ Fall 2023 Syllabus

Course Information

Number and title: Arch 436 - Advanced Modeling

Instructor info:

E-Mail:
Prerequisite(s):
Text and Materials:
Tutorials Location:

Alphonso Peluso

peluso@iit.edu
DC3 or permission to take the course All course resources will be provided on the portal link below:
http://www.digiitalarchfab.com/arch-436-advanced-modeling-fall-2023/

Course description:

This course will focus on 3D modeling of complex geometric components in Architecture and design. Concepts explored will concentrate on the advancement of digital design as an iterative process. Various modeling types covered are: Parametric Modeling, Generative Modeling, Responsive Modeling and Form Finding.

Goals:	Develop an in-depth understanding of NURBS Modeling
	Use architectural and structural texts as a guide/aid for learning complex 3D modeling.
	Create complex parametric models based on text book concepts
	Establish a deeper understanding of parametric modeling from
the Midterm, Final and weekly assignment process and	
completion	

Students with Disabilities Statement:

Americans with Disabilities Act (ADA) Policy Statement
Reasonable accommodations will be made for students with documented disabilities. In order to receive accommodations, students must go through the Center for Disability Resources office. The Center for Disability Resources (CDR) is located at 3424 S. State Street, Suite 1C3-2, Chicago, IL 60616 telephone 312567.5744 or disabilities@iit.edu.

Reading List:

Parametric Architecture with Grasshopper: Primer by Arturo Tedeschi
AAD: Algorithims Aided Design by Arturo Tedeschi
Grading: Students will submit 9 Homework assignments, Midterm, and Final
Final grade is based on the four percentages below:

10\% for attendance

(attendance is mandatory, signing in for someone and/or 3 unexcused absences will result in a failing grade)

20\% for Homework assignments
30\% for Midterm
40\% for the Final
Please note: attendance, completion and submission of all course work on time is the minimum requirement and does not mean that you will receive an A grade. All grades are subject to the grade judging criteria below:

Grades are determined by judging 4 different categories:

Legibility - Make sure that your assignments are clear and easy to read. Use spell check (all software apps have it). Your shared folder should be neat and organized with assignment \#'s labeled Firstname_Lastname_A0\#.

Composition - In addition to being legible you should apply all the concepts of composition that you have previously learned. Some suggestions including but not limited to are: all line drawings must demonstrate good line weights, assignments should include title and drawing names, all text should be placed with good layout \& scale.

Innovation - Expand upon the skill sets taught in the course and apply them to the assignments. Research additional learning resources found on the Internet and in Libraries. Create your own way to apply the software tools and concepts discussed in the course.

Originality - Assignments will weigh heavily on Originality. Strive to satisfy the requirements of the assignments with creative and original solutions

Class Schedule	
Week One: August 24	Introduction _ Interface _ Geometry Types _ Nurbs What is Rhino Grasshopper 3D? What Is Grasshopper Good For?
Week Two: August 31	Build a Strong Foundation in Grasshopper Generating Multiple Values (Series) _ (Range) _ (Domain) _ (Random) (Graph Mapper) Generative Components (Iso Trim) _ (Divide Domain 2) _ (Morph Box) (Surface Box)
Week Three: September 07	Rhino 3D and Grasshopper 3D Surface Manipulation Parametric Case Study -UnStudio Burnham Pavilion Paneling Tools 2.5D Paneling Tools 3D
Week Four: September 14	Paneling Tools Effects \qquad Data Trees \#01 Point Attractor, Curve Attractor, Srf Curvature Attract Intro To Galapagos Evolutionary Solver Midterm Assignment posted
Week Five: September 21	Parametric Form Finding 01 _ (Kangaroo) ShellStar Pavilion by Matsys Galapagos Evolutionary Solver
Week Six: September 28	Parametric Form Finding 02 _ (Kangaroo) Munich Olympic Stadium - Frei Otto Icosahedron _ Pressure _ Weaverbird Plug-in
Week Seven: October 05	Parametric Form Finding 03 _ (Kangaroo) Minimal Surfaces _ Collision

